当前位置:冬日小说网>天龙仙尊>第261章 宇宙相关
阅读设置

设置X

第261章 宇宙相关

随着巡天观测技术水平的逐步提高,人类不断尝试绘制整个宇宙的全貌。2021年1月14日,国家天文台北京-亚利桑那巡天(BASS)团队和暗能量光谱巡天(DESI)团队联合发布最新巨幅二维宇宙地图[3]。

物理宇宙被定义为所有的空间和时间(统称为时空)及其内涵,包括各种形式的所有能量,比如电磁辐射、普通物质、暗物质、暗能量等,其中普通物质包括行星、卫星、恒星、星系、星系团和星系间物质等。宇宙还包括影响物质和能量的物理定律,如守恒定律、经典力学、相对论等。

从历史上看,对宇宙及其起源有许多想法。古希腊人和古印度人首先提出了由物理定律主导而非个人观点的宇宙理论。中国古代哲学中包含宇宙的概念,宇为所有的空间,宙为所有的时间。[10]几个世纪以来,天文观测以及运动和引力理论的改进,使得对宇宙描述更准确。现代宇宙学始于阿尔伯特·爱因斯坦(AlbertEinstein)在1915年的广义相对论,该理论使定量化的预测整个宇宙的起源、演化和结局成为可能。绝大多数现代的、公认的宇宙学理论都基于广义相对论,更具体的是指大爆炸理论。[11]

在巴比伦天文学家开始天文学研究后不久,就提出了宇宙的天文模型,他们把宇宙视为漂浮在海洋中的平底盘子,成为早期希腊地图的前提,比如阿那克西曼德(Anaximander)和米利都赫卡塔埃乌斯绘制的地图。

后来的希腊哲学家观察天体运动,聚焦于更深刻地根据经验证据发展宇宙模型。第一个相干模型是由尼多斯(Cnidos)的欧多克索斯(Eudoxus)提出的。根据亚里士多德对模型的物理解释,天体在静止的地球周围以均匀的运动永久运转。物质完全包含在地球球体中。

在放弃同心球模型后,这个地心说模型也由卡利普斯(Callippus)改进,它几乎与托勒密(Ptolemy)的天文观测完全一致。这种模型的成功很大程度上是基于数学上的事实,即任何函数(如行星的位置)都可以分解成一组圆形函数(傅里叶模式)。其他希腊科学家还有毕达哥拉斯(Pythagoras)学派哲学家菲洛劳斯(Philolaus)。根据希腊作家文献汇编者斯托拜乌斯(Stobaeus)的说法,菲洛劳斯假设在宇宙中心的是一团“中心火“(centralfire),地球、太阳、月亮和行星围绕它以均匀的圆周运动旋转。[16]

希腊天文学家来自萨摩斯(Samos)的阿里斯塔库斯(Aristarchus)被认为是第一个提出宇宙日心模型的人。虽然原文本已经丢失,但阿基米德(Archimedes)的著作《数沙者》(TheSandReckoner)中的一个参考描述了阿里斯塔库斯的日心模型。阿里斯塔库斯认为恒星离太阳很远,并认为这是恒星视差没有被观测到的原因,也就是说,当地球绕着太阳移动时,没有观测到恒星彼此相对移动。事实上,恒星的距离比古代通常假定的距离要远得多,这就是为什么恒星视差只能通过精密仪器探测到。地心模型与行星视差一致,平行现象被认为是恒星视差不可观测的原因。对日心说的拒绝显然相当强烈,克里安西斯(Cleanthes,亚里士多德时代的当代主义者和斯多葛主义的领袖)建议希腊人起诉阿里斯塔库斯。

10世纪希腊抄本描述前3世纪阿里斯塔库斯计算太阳地球月球大小

在古代支持阿里斯塔库斯日心模型且留下姓名的天文学家仅有塞琉西亚的塞琉古,他是希腊天文学家,生活在阿里斯塔库斯之后的一个世纪。[17]根据普鲁塔克(Plutarch)的说法,塞琉古是第一个通过推理来验证日心模型的人,但不知道他使用了什么论据。塞琉古关于日心宇宙学的论点可能与潮汐现象有关。根据斯特拉波(Strabo)的说法,塞琉古是第一个指出潮汐是由于月球的吸引力造成的,而潮汐的高度取决于月球相对于太阳的位置。就像尼古拉·哥白尼(NicolausCopernicus)后来在16世纪所做的一样。在中世纪,印度天文学家阿耶波多(Aryabhata)和波斯天文学家阿布·玛沙尔(AbuMa‘shar)和艾尔·森加辛(Al-Sijzi)也提出了日心模型。艾尔·森加辛还认为地球在自转轴上旋转。

托马斯·迪格斯在1576年绘制的哥白尼宇宙模型

亚里士多德的地心说模型在西方世界被接受大约两千年,直到尼古拉·哥白尼(NicolausCopernicus)恢复了阿里斯塔库斯的日心说模型,即如果地球在自转轴上自转,而且太阳被放置在宇宙的中心,天文观测数据可以解释得更合理。正如哥白尼自己指出的,地球自转的概念非常古老,至少可以追溯到菲洛劳斯(Philolaus,约公元前450年),蓬杜斯(Ponticus)的赫拉克利德斯(Heraclides,约公元前350年)和毕达哥拉斯学派的厄克方图(Ecphantus)。大约在哥白尼前一个世纪,库萨(Cusa)的基督教学者尼古拉斯(Nicholas)在他的著作《论无知》(1440年)中也提出地球在其自转轴上旋转。纳西尔丁·图西(Tusi,1201–1274)和阿里·古什吉(AliQushji,1403–1474)利用彗星天象提供了地球在自转轴上自转的经验证据。日心说被艾萨克·牛顿(IsaacNewton)、克里斯蒂安·惠更斯(ChristiaanHuygens)以及后来的科学家所接受。牛顿以哥白尼的研究、第谷·布拉赫(JohannesKepler)的观测数据以及约翰尼斯·开普勒(JohannesKepler)的行星运动定律为基础,总结出了万有引力定律。

19世纪法国科普作家C.Flammarion书中宇宙木刻插图

埃德蒙·哈雷(EdmundHalley,1720年)和让-菲利普·德·查索(Jean-PhilippedeChéseaux,1744年)独立地指出,假设无限空间均匀地充满恒星,这将导致夜间天空与太阳本身一样明亮的预测,这在19世纪被称为奥伯斯佯谬(Olbers‘paradox)。牛顿认为,一个无限空间一致地充满物质会导致无限的力,以及导致物质在自身引力下向内坍缩的不稳定。1902年,金斯不稳定性阐释了这种不稳定。[18]约翰·海因里希·朗伯(JohannHeinrichLambert)在1761年早些时候也提出了这样的宇宙学模型。18世纪天文学的一个重大进步是汤姆斯·莱特(ThomasWright)、伊曼努尔·康德(ImmanuelKant)和其他人对星云的观测。

1919年,当胡克望远镜(HookerTelescope)建成时,主流的观点仍然是宇宙完全由银河系组成。埃德温·哈勃(EdwinHubble)利用胡克望远镜在几个旋涡状“星云”(当时还不认为是银河系外的星系)中识别了造父变星(Cepheidvariables),并在1922-1923年间确凿地证明了仙女座星云(M31)和三角座星云(M33)等是银河系之外完整的星系,从而证明宇宙由众多独立的星系组成。[19]进一步的研究使人们认识到,太阳是银河系中数千亿颗恒星之一,而银河系是宇宙中至少两万亿个星系之一。银河系中的多数恒星都有行星。在较大的宇宙尺度上,星系在各个方向上分布均匀、相同,这意味着宇宙既没有边缘也没有中心。在较小的尺度上,星系分布在星系团和超星系团中,它们在宇宙中形成巨大的大尺度纤维状结构和宇宙空洞,构成一个巨大的泡沫状结构体[20]。20世纪初研究发现,大多数星系具有系统性的红移现象,这表明宇宙正在膨胀;借由对宇宙微波背景辐射的观测,表明宇宙具有起源。

上一章 下一章

足迹 目录 编辑本章 报错

随机推荐: 帅美系统都市盖世兵王史上第一科技林老师她比星光璀璨乡野小村医我真不想当绝世天才星际萌商时代祸国妖妃睥睨天下